IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
5.8KB

  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import numpy as np
  6. import torch
  7. import torch.utils.data
  8. from typing import List, \
  9. Union, \
  10. Tuple
  11. from .data import Data, \
  12. EdgeType
  13. from .cumcount import cumcount
  14. import time
  15. def fixed_unigram_candidate_sampler(
  16. true_classes: Union[np.array, torch.Tensor],
  17. unigrams: List[Union[int, float]],
  18. distortion: float = 1.):
  19. if isinstance(true_classes, torch.Tensor):
  20. true_classes = true_classes.detach().cpu().numpy()
  21. if isinstance(unigrams, torch.Tensor):
  22. unigrams = unigrams.detach().cpu().numpy()
  23. if len(true_classes.shape) != 2:
  24. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  25. num_samples = true_classes.shape[0]
  26. unigrams = np.array(unigrams)
  27. if distortion != 1.:
  28. unigrams = unigrams.astype(np.float64) ** distortion
  29. # print('unigrams:', unigrams)
  30. indices = np.arange(num_samples)
  31. result = np.zeros(num_samples, dtype=np.int64)
  32. while len(indices) > 0:
  33. # print('len(indices):', len(indices))
  34. sampler = torch.utils.data.WeightedRandomSampler(unigrams, len(indices))
  35. candidates = np.array(list(sampler))
  36. candidates = np.reshape(candidates, (len(indices), 1))
  37. # print('candidates:', candidates)
  38. # print('true_classes:', true_classes[indices, :])
  39. result[indices] = candidates.T
  40. # print('result:', result)
  41. mask = (candidates == true_classes[indices, :])
  42. mask = mask.sum(1).astype(np.bool)
  43. # print('mask:', mask)
  44. indices = indices[mask]
  45. # result[indices] = 0
  46. return torch.tensor(result)
  47. def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
  48. Tuple[torch.Tensor, torch.Tensor]:
  49. if adj_mat.is_sparse:
  50. adj_mat = adj_mat.coalesce()
  51. degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
  52. device=adj_mat.device)
  53. degrees = degrees.index_add(0, adj_mat.indices()[1],
  54. torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
  55. device=adj_mat.device))
  56. edges_pos = adj_mat.indices().transpose(0, 1)
  57. else:
  58. degrees = adj_mat.sum(0)
  59. edges_pos = torch.nonzero(adj_mat, as_tuple=False)
  60. return edges_pos, degrees
  61. def get_true_classes(adj_mat: torch.Tensor) -> torch.Tensor:
  62. indices = adj_mat.indices()
  63. row_count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  64. #print('indices[0]:', indices[0], count[indices[0]])
  65. row_count = row_count.index_add(0, indices[0],
  66. torch.ones(indices.shape[1], dtype=torch.long))
  67. #print('count:', count)
  68. max_true_classes = torch.max(row_count).item()
  69. #print('max_true_classes:', max_true_classes)
  70. true_classes = torch.full((adj_mat.shape[0], max_true_classes),
  71. -1, dtype=torch.long)
  72. # inv = torch.unique(indices[0], return_inverse=True)
  73. # indices = indices.copy()
  74. # true_classes[indices[0], 0] = indices[1]
  75. t = time.time()
  76. cc = cumcount(indices[0].cpu().numpy())
  77. print('cumcount() took:', time.time() - t)
  78. cc = torch.tensor(cc)
  79. t = time.time()
  80. true_classes[indices[0], cc] = indices[1]
  81. print('assignment took:', time.time() - t)
  82. ''' count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  83. for i in range(indices.shape[1]):
  84. # print('looping...')
  85. row = indices[0, i]
  86. col = indices[1, i]
  87. #print('row:', row, 'col:', col, 'count[row]:', count[row])
  88. true_classes[row, count[row]] = col
  89. count[row] += 1 '''
  90. t = time.time()
  91. true_classes = torch.repeat_interleave(true_classes, row_count, dim=0)
  92. print('repeat_interleave() took:', time.time() - t)
  93. return true_classes
  94. def negative_sample_adj_mat(adj_mat: torch.Tensor) -> torch.Tensor:
  95. if not isinstance(adj_mat, torch.Tensor):
  96. raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
  97. edges_pos, degrees = get_edges_and_degrees(adj_mat)
  98. true_classes = get_true_classes(adj_mat)
  99. # true_classes = edges_pos[:, 1].view(-1, 1)
  100. # print('true_classes:', true_classes)
  101. neg_neighbors = fixed_unigram_candidate_sampler(
  102. true_classes, degrees, 0.75).to(adj_mat.device)
  103. print('neg_neighbors:', neg_neighbors)
  104. edges_neg = torch.cat([ edges_pos[:, 0].view(-1, 1),
  105. neg_neighbors.view(-1, 1) ], 1)
  106. adj_mat_neg = torch.sparse_coo_tensor(indices = edges_neg.transpose(0, 1),
  107. values=torch.ones(len(edges_neg)), size=adj_mat.shape,
  108. dtype=adj_mat.dtype, device=adj_mat.device)
  109. adj_mat_neg = adj_mat_neg.coalesce()
  110. indices = adj_mat_neg.indices()
  111. adj_mat_neg = torch.sparse_coo_tensor(indices,
  112. torch.ones(indices.shape[1]), adj_mat.shape,
  113. dtype=adj_mat.dtype, device=adj_mat.device)
  114. adj_mat_neg = adj_mat_neg.coalesce()
  115. return adj_mat_neg
  116. def negative_sample_data(data: Data) -> Data:
  117. new_edge_types = {}
  118. res = Data()
  119. for vt in data.vertex_types:
  120. res.add_vertex_type(vt.name, vt.count)
  121. for key, et in data.edge_types.items():
  122. adjacency_matrices_neg = []
  123. for adj_mat in et.adjacency_matrices:
  124. adj_mat_neg = negative_sample_adj_mat(adj_mat)
  125. adjacency_matrices_neg.append(adj_mat_neg)
  126. res.add_edge_type(et.name,
  127. et.vertex_type_row, et.vertex_type_column,
  128. adjacency_matrices_neg, et.decoder_factory)
  129. #new_et = EdgeType(et.name, et.vertex_type_row,
  130. # et.vertex_type_column, adjacency_matrices_neg,
  131. # et.decoder_factory, et.total_connectivity)
  132. #new_edge_types[key] = new_et
  133. #res = Data(data.vertex_types, new_edge_types)
  134. return res