|
- from icosagon.data import Data
- from icosagon.bulkdec import BulkDecodeLayer
- from icosagon.input import OneHotInputLayer
- from icosagon.convlayer import DecagonLayer
- import torch
- import pytest
- import time
- import sys
-
-
- def test_bulk_decode_layer_01():
- data = Data()
- data.add_node_type('Dummy', 100)
- fam = data.add_relation_family('Dummy-Dummy', 0, 0, False)
- fam.add_relation_type('Dummy Relation 1',
- torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
-
- pred = seq(None)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[0].count
-
-
- def test_bulk_decode_layer_02():
- data = Data()
- data.add_node_type('Foo', 100)
- data.add_node_type('Bar', 50)
- fam = data.add_relation_family('Foo-Bar', 0, 1, False)
- fam.add_relation_type('Foobar Relation 1',
- torch.rand((100, 50), dtype=torch.float32).round().to_sparse(),
- torch.rand((50, 100), dtype=torch.float32).round().to_sparse())
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
-
- pred = seq(None)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[1].count
-
-
- def test_bulk_decode_layer_03():
- data = Data()
- data.add_node_type('Foo', 100)
- data.add_node_type('Bar', 50)
- fam = data.add_relation_family('Foo-Bar', 0, 1, False)
- fam.add_relation_type('Foobar Relation 1',
- torch.rand((100, 50), dtype=torch.float32).round().to_sparse(),
- torch.rand((50, 100), dtype=torch.float32).round().to_sparse())
- fam.add_relation_type('Foobar Relation 2',
- torch.rand((100, 50), dtype=torch.float32).round().to_sparse(),
- torch.rand((50, 100), dtype=torch.float32).round().to_sparse())
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
-
- pred = seq(None)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[1].count
-
-
- def test_bulk_decode_layer_03_big():
- data = Data()
- data.add_node_type('Foo', 2000)
- data.add_node_type('Bar', 2100)
- fam = data.add_relation_family('Foo-Bar', 0, 1, False)
- fam.add_relation_type('Foobar Relation 1',
- torch.rand((2000, 2100), dtype=torch.float32).round().to_sparse(),
- torch.rand((2100, 2000), dtype=torch.float32).round().to_sparse())
- fam.add_relation_type('Foobar Relation 2',
- torch.rand((2000, 2100), dtype=torch.float32).round().to_sparse(),
- torch.rand((2100, 2000), dtype=torch.float32).round().to_sparse())
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
-
- pred = seq(None)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[1].count
-
-
- def test_bulk_decode_layer_03_huge_gpu():
- if torch.cuda.device_count() == 0:
- pytest.skip('test_bulk_decode_layer_03_huge_gpu() requires CUDA support')
-
- device = torch.device('cuda:0')
- data = Data()
- data.add_node_type('Foo', 20000)
- data.add_node_type('Bar', 21000)
- fam = data.add_relation_family('Foo-Bar', 0, 1, False)
- print('Adding Foobar Relation 1...')
- fam.add_relation_type('Foobar Relation 1',
- torch.rand((20000, 21000), dtype=torch.float32).round().to_sparse().to(device),
- torch.rand((21000, 20000), dtype=torch.float32).round().to_sparse().to(device))
- print('Adding Foobar Relation 2...')
- fam.add_relation_type('Foobar Relation 2',
- torch.rand((20000, 21000), dtype=torch.float32).round().to_sparse().to(device),
- torch.rand((21000, 20000), dtype=torch.float32).round().to_sparse().to(device))
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
- seq = seq.to(device)
-
- print('Starting forward pass...')
- t = time.time()
- pred = seq(None)
- print('Elapsed:', time.time() - t)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[1].count
-
-
- def test_bulk_decode_layer_04_huge_multirel_gpu():
- if torch.cuda.device_count() == 0:
- pytest.skip('test_bulk_decode_layer_04_huge_multirel_gpu() requires CUDA support')
-
- if torch.cuda.get_device_properties(0).total_memory < 64000000000:
- pytest.skip('test_bulk_decode_layer_04_huge_multirel_gpu() requires GPU with 64GB of memory')
-
- device = torch.device('cuda:0')
- data = Data()
- data.add_node_type('Foo', 20000)
- data.add_node_type('Bar', 21000)
- fam = data.add_relation_family('Foo-Bar', 0, 1, False)
- print('Generating adj_mat ...')
- adj_mat = torch.rand((20000, 21000), dtype=torch.float32).round().to_sparse().to(device)
- print('Generating adj_mat_back ...')
- adj_mat_back = torch.rand((21000, 20000), dtype=torch.float32).round().to_sparse().to(device)
- print('Adding relations ...')
- for i in range(1300):
- sys.stdout.write('.')
- sys.stdout.flush()
- fam.add_relation_type(f'Foobar Relation {i}', adj_mat, adj_mat_back)
- print()
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
- seq = seq.to(device)
-
- print('Starting forward pass...')
- t = time.time()
- pred = seq(None)
- print('Elapsed:', time.time() - t)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[1].count
-
-
- def test_bulk_decode_layer_04_big_multirel_gpu():
- if torch.cuda.device_count() == 0:
- pytest.skip('test_bulk_decode_layer_04_big_multirel_gpu() requires CUDA support')
-
- device = torch.device('cuda:0')
- data = Data()
- data.add_node_type('Foo', 2000)
- data.add_node_type('Bar', 2100)
- fam = data.add_relation_family('Foo-Bar', 0, 1, False)
- print('Generating adj_mat ...')
- adj_mat = torch.rand((2000, 2100), dtype=torch.float32).round().to_sparse().to(device)
- print('Generating adj_mat_back ...')
- adj_mat_back = torch.rand((2100, 2000), dtype=torch.float32).round().to_sparse().to(device)
- print('Adding relations ...')
- for i in range(1300):
- sys.stdout.write('.')
- sys.stdout.flush()
- fam.add_relation_type(f'Foobar Relation {i}', adj_mat, adj_mat_back)
- print()
-
- in_layer = OneHotInputLayer(data)
- d_layer = DecagonLayer(in_layer.output_dim, 32, data)
- dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data,
- keep_prob=1., activation=lambda x: x)
- seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
- seq = seq.to(device)
-
- print('Starting forward pass...')
- t = time.time()
- pred = seq(None)
- print('Elapsed:', time.time() - t)
-
- assert isinstance(pred, list)
- assert len(pred) == len(data.relation_families)
- assert isinstance(pred[0], torch.Tensor)
- assert len(pred[0].shape) == 3
- assert len(pred[0]) == len(data.relation_families[0].relation_types)
- assert pred[0].shape[1] == data.node_types[0].count
- assert pred[0].shape[2] == data.node_types[1].count
|