IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

270 lines
9.2KB

  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import numpy as np
  6. import torch
  7. import torch.utils.data
  8. from typing import List, \
  9. Union, \
  10. Tuple
  11. from .data import Data, \
  12. EdgeType
  13. from .cumcount import cumcount
  14. import time
  15. import multiprocessing
  16. import multiprocessing.pool
  17. from itertools import product, \
  18. repeat
  19. from functools import reduce
  20. def fixed_unigram_candidate_sampler_slow(
  21. true_classes: torch.Tensor,
  22. num_repeats: torch.Tensor,
  23. unigrams: torch.Tensor,
  24. distortion: float = 1.) -> torch.Tensor:
  25. assert isinstance(true_classes, torch.Tensor)
  26. assert isinstance(num_repeats, torch.Tensor)
  27. assert isinstance(unigrams, torch.Tensor)
  28. distortion = float(distortion)
  29. if len(true_classes.shape) != 2:
  30. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  31. if len(num_repeats.shape) != 1:
  32. raise ValueError('num_repeats must be 1D')
  33. if torch.any((unigrams > 0).sum() - \
  34. (true_classes >= 0).sum(dim=1) < \
  35. num_repeats):
  36. raise ValueError('Not enough classes to choose from')
  37. res = []
  38. if distortion != 1.:
  39. unigrams = unigrams.to(torch.float64)
  40. unigrams = unigrams ** distortion
  41. def fun(i):
  42. if i and i % 100 == 0:
  43. print(i)
  44. if num_repeats[i] == 0:
  45. return []
  46. pos = torch.flatten(true_classes[i, :])
  47. pos = pos[pos >= 0]
  48. w = unigrams.clone().detach()
  49. w[pos] = 0
  50. sampler = torch.utils.data.WeightedRandomSampler(w,
  51. num_repeats[i].item(), replacement=False)
  52. res = list(sampler)
  53. return res
  54. with multiprocessing.pool.ThreadPool() as p:
  55. res = p.map(fun, range(len(num_repeats)))
  56. res = reduce(list.__add__, res, [])
  57. return torch.tensor(res)
  58. def fixed_unigram_candidate_sampler(
  59. true_classes: torch.Tensor,
  60. num_repeats: torch.Tensor,
  61. unigrams: torch.Tensor,
  62. distortion: float = 1.) -> torch.Tensor:
  63. if len(true_classes.shape) != 2:
  64. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  65. if len(num_repeats.shape) != 1:
  66. raise ValueError('num_repeats must be 1D')
  67. if torch.any((unigrams > 0).sum() - \
  68. (true_classes >= 0).sum(dim=1) < \
  69. num_repeats):
  70. raise ValueError('Not enough classes to choose from')
  71. num_rows = true_classes.shape[0]
  72. print('true_classes.shape:', true_classes.shape)
  73. # unigrams = np.array(unigrams)
  74. if distortion != 1.:
  75. unigrams = unigrams.to(torch.float64) ** distortion
  76. print('unigrams:', unigrams)
  77. indices = torch.arange(num_rows)
  78. indices = torch.repeat_interleave(indices, num_repeats)
  79. indices = torch.cat([ torch.arange(len(indices)).view(-1, 1),
  80. indices.view(-1, 1) ], dim=1)
  81. num_samples = len(indices)
  82. result = torch.zeros(num_samples, dtype=torch.long)
  83. print('num_rows:', num_rows, 'num_samples:', num_samples)
  84. while len(indices) > 0:
  85. print('len(indices):', len(indices))
  86. print('indices:', indices)
  87. sampler = torch.utils.data.WeightedRandomSampler(unigrams, len(indices))
  88. candidates = torch.tensor(list(sampler))
  89. candidates = candidates.view(len(indices), 1)
  90. print('candidates:', candidates)
  91. print('true_classes:', true_classes[indices[:, 1], :])
  92. result[indices[:, 0]] = candidates.transpose(0, 1)
  93. print('result:', result)
  94. mask = (candidates == true_classes[indices[:, 1], :])
  95. mask = mask.sum(1).to(torch.bool)
  96. # append_true_classes = torch.full(( len(true_classes), ), -1)
  97. # append_true_classes[~mask] = torch.flatten(candidates)[~mask]
  98. # true_classes = torch.cat([
  99. # append_true_classes.view(-1, 1),
  100. # true_classes
  101. # ], dim=1)
  102. print('mask:', mask)
  103. indices = indices[mask]
  104. # result[indices] = 0
  105. return result
  106. def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
  107. Tuple[torch.Tensor, torch.Tensor]:
  108. if adj_mat.is_sparse:
  109. adj_mat = adj_mat.coalesce()
  110. degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
  111. device=adj_mat.device)
  112. degrees = degrees.index_add(0, adj_mat.indices()[1],
  113. torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
  114. device=adj_mat.device))
  115. edges_pos = adj_mat.indices().transpose(0, 1)
  116. else:
  117. degrees = adj_mat.sum(0)
  118. edges_pos = torch.nonzero(adj_mat, as_tuple=False)
  119. return edges_pos, degrees
  120. def get_true_classes(adj_mat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
  121. indices = adj_mat.indices()
  122. row_count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  123. #print('indices[0]:', indices[0], count[indices[0]])
  124. row_count = row_count.index_add(0, indices[0],
  125. torch.ones(indices.shape[1], dtype=torch.long))
  126. #print('count:', count)
  127. max_true_classes = torch.max(row_count).item()
  128. #print('max_true_classes:', max_true_classes)
  129. true_classes = torch.full((adj_mat.shape[0], max_true_classes),
  130. -1, dtype=torch.long)
  131. # inv = torch.unique(indices[0], return_inverse=True)
  132. # indices = indices.copy()
  133. # true_classes[indices[0], 0] = indices[1]
  134. t = time.time()
  135. cc = cumcount(indices[0].cpu().numpy())
  136. print('cumcount() took:', time.time() - t)
  137. cc = torch.tensor(cc)
  138. t = time.time()
  139. true_classes[indices[0], cc] = indices[1]
  140. print('assignment took:', time.time() - t)
  141. ''' count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  142. for i in range(indices.shape[1]):
  143. # print('looping...')
  144. row = indices[0, i]
  145. col = indices[1, i]
  146. #print('row:', row, 'col:', col, 'count[row]:', count[row])
  147. true_classes[row, count[row]] = col
  148. count[row] += 1 '''
  149. # t = time.time()
  150. # true_classes = torch.repeat_interleave(true_classes, row_count, dim=0)
  151. # print('repeat_interleave() took:', time.time() - t)
  152. return true_classes, row_count
  153. def negative_sample_adj_mat(adj_mat: torch.Tensor,
  154. remove_diagonal: bool=False) -> torch.Tensor:
  155. if not isinstance(adj_mat, torch.Tensor):
  156. raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
  157. edges_pos, degrees = get_edges_and_degrees(adj_mat)
  158. degrees = degrees.to(torch.float32) + 1.0 / torch.numel(adj_mat)
  159. true_classes, row_count = get_true_classes(adj_mat)
  160. if remove_diagonal:
  161. true_classes = torch.cat([ torch.arange(len(adj_mat)).view(-1, 1),
  162. true_classes ], dim=1)
  163. # true_classes = edges_pos[:, 1].view(-1, 1)
  164. # print('true_classes:', true_classes)
  165. neg_neighbors = fixed_unigram_candidate_sampler(
  166. true_classes, row_count, degrees, 0.75).to(adj_mat.device)
  167. print('neg_neighbors:', neg_neighbors)
  168. pos_vertices = torch.repeat_interleave(torch.arange(len(adj_mat)),
  169. row_count)
  170. edges_neg = torch.cat([ pos_vertices.view(-1, 1),
  171. neg_neighbors.view(-1, 1) ], 1)
  172. adj_mat_neg = torch.sparse_coo_tensor(indices = edges_neg.transpose(0, 1),
  173. values=torch.ones(len(edges_neg)), size=adj_mat.shape,
  174. dtype=adj_mat.dtype, device=adj_mat.device)
  175. adj_mat_neg = adj_mat_neg.coalesce()
  176. indices = adj_mat_neg.indices()
  177. adj_mat_neg = torch.sparse_coo_tensor(indices,
  178. torch.ones(indices.shape[1]), adj_mat.shape,
  179. dtype=adj_mat.dtype, device=adj_mat.device)
  180. adj_mat_neg = adj_mat_neg.coalesce()
  181. return adj_mat_neg
  182. def negative_sample_data(data: Data) -> Data:
  183. new_edge_types = {}
  184. res = Data(target_value=0)
  185. for vt in data.vertex_types:
  186. res.add_vertex_type(vt.name, vt.count)
  187. for key, et in data.edge_types.items():
  188. print('key:', key)
  189. adjacency_matrices_neg = []
  190. for adj_mat in et.adjacency_matrices:
  191. remove_diagonal = True \
  192. if et.vertex_type_row == et.vertex_type_column \
  193. else False
  194. adj_mat_neg = negative_sample_adj_mat(adj_mat, remove_diagonal)
  195. adjacency_matrices_neg.append(adj_mat_neg)
  196. res.add_edge_type(et.name,
  197. et.vertex_type_row, et.vertex_type_column,
  198. adjacency_matrices_neg, et.decoder_factory)
  199. #new_et = EdgeType(et.name, et.vertex_type_row,
  200. # et.vertex_type_column, adjacency_matrices_neg,
  201. # et.decoder_factory, et.total_connectivity)
  202. #new_edge_types[key] = new_et
  203. #res = Data(data.vertex_types, new_edge_types)
  204. return res
  205. def merge_data(pos_data: Data, neg_data: Data) -> Data:
  206. assert isinstance(pos_data, Data)
  207. assert isinstance(neg_data, Data)
  208. res = PosNegData()
  209. for vt in pos_data.vertex_types:
  210. res.add_vertex_type(vt.name, vt.count)
  211. for key, pos_et in pos_data.edge_types.items():
  212. neg_et = neg_data.edge_types[key]
  213. res.add_edge_type(pos_et.name,
  214. pos_et.vertex_type_row, pos_et.vertex_type_column,
  215. pos_et.adjacency_matrices, neg_et.adjacency_matrices,
  216. pos_et.decoder_factory)