IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
Stanislaw Adaszewski 706ff0b009 New implementation of normalize for one/two node types and sparse/dense - good. il y a 4 ans
docs Work on icosagon.trainprep. il y a 4 ans
src New implementation of normalize for one/two node types and sparse/dense - good. il y a 4 ans
tests New implementation of normalize for one/two node types and sparse/dense - good. il y a 4 ans
.empty Initial commit. il y a 4 ans
.gitignore Started implementing convolutions, with tests. il y a 4 ans
README.md Update README.md il y a 4 ans
requirements.txt Start icosagon. il y a 4 ans

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.