IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

63 Zeilen
2.2KB

  1. #!/usr/bin/env python3
  2. from icosagon.data import Data
  3. import os
  4. import pandas as pd
  5. from bisect import bisect_left
  6. import torch
  7. def index(a, x):
  8. i = bisect_left(a, x)
  9. if i != len(a) and a[i] == x:
  10. return i
  11. raise ValueError
  12. def main():
  13. path = '/pstore/data/data_science/ref/decagon'
  14. df_combo = pd.read_csv(os.path.join(path, 'bio-decagon-combo.csv'))
  15. df_effcat = pd.read_csv(os.path.join(path, 'bio-decagon-effectcategories.csv'))
  16. df_mono = pd.read_csv(os.path.join(path, 'bio-decagon-mono.csv'))
  17. df_ppi = pd.read_csv(os.path.join(path, 'bio-decagon-ppi.csv'))
  18. df_tgtall = pd.read_csv(os.path.join(path, 'bio-decagon-targets-all.csv'))
  19. df_tgt = pd.read_csv(os.path.join(path, 'bio-decagon-targets.csv'))
  20. lst = [ 'df_combo', 'df_effcat', 'df_mono', 'df_ppi', 'df_tgtall', 'df_tgt' ]
  21. for nam in lst:
  22. print(f'len({nam}): {len(locals()[nam])}')
  23. print(f'{nam}.columns: {locals()[nam].columns}')
  24. genes = set()
  25. genes = genes.union(df_ppi['Gene 1']).union(df_ppi['Gene 2']) \
  26. .union(df_tgtall['Gene']).union(df_tgt['Gene'])
  27. genes = sorted(genes)
  28. print('len(genes):', len(genes))
  29. drugs = set()
  30. drugs = drugs.union(df_combo['STITCH 1']).union(df_combo['STITCH 2']) \
  31. .union(df_mono['STITCH']).union(df_tgtall['STITCH']).union(df_tgt['STITCH'])
  32. drugs = sorted(drugs)
  33. print('len(drugs):', len(drugs))
  34. data = Data()
  35. data.add_node_type('Gene', len(genes))
  36. data.add_node_type('Drug', len(drugs))
  37. print('Indexing rows...')
  38. rows = [index(genes, g) for g in df_ppi['Gene 1']]
  39. print('Indexing cols...')
  40. cols = [index(genes, g) for g in df_ppi['Gene 2']]
  41. indices = list(zip(rows, cols))
  42. indices = torch.tensor(indices).transpose(0, 1)
  43. values = torch.ones(len(rows))
  44. print('indices.shape:', indices.shape, 'values.shape:', values.shape)
  45. adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(genes),) * 2)
  46. adj_mat = (adj_mat + adj_mat.transpose(0, 1)) / 2
  47. print('adj_mat created')
  48. fam = data.add_relation_family('PPI', 0, 0, True)
  49. rel = fam.add_relation_type('PPI', adj_mat)
  50. if __name__ == '__main__':
  51. main()