IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

154 lignes
5.2KB

  1. from decagon_pytorch.layer import InputLayer, \
  2. OneHotInputLayer, \
  3. DecagonLayer
  4. from decagon_pytorch.data import Data
  5. import torch
  6. import pytest
  7. from decagon_pytorch.convolve import SparseDropoutGraphConvActivation
  8. def _some_data():
  9. d = Data()
  10. d.add_node_type('Gene', 1000)
  11. d.add_node_type('Drug', 100)
  12. d.add_relation_type('Target', 1, 0, None)
  13. d.add_relation_type('Interaction', 0, 0, None)
  14. d.add_relation_type('Side Effect: Nausea', 1, 1, None)
  15. d.add_relation_type('Side Effect: Infertility', 1, 1, None)
  16. d.add_relation_type('Side Effect: Death', 1, 1, None)
  17. return d
  18. def _some_data_with_interactions():
  19. d = Data()
  20. d.add_node_type('Gene', 1000)
  21. d.add_node_type('Drug', 100)
  22. d.add_relation_type('Target', 1, 0,
  23. torch.rand((100, 1000), dtype=torch.float32).round())
  24. d.add_relation_type('Interaction', 0, 0,
  25. torch.rand((1000, 1000), dtype=torch.float32).round())
  26. d.add_relation_type('Side Effect: Nausea', 1, 1,
  27. torch.rand((100, 100), dtype=torch.float32).round())
  28. d.add_relation_type('Side Effect: Infertility', 1, 1,
  29. torch.rand((100, 100), dtype=torch.float32).round())
  30. d.add_relation_type('Side Effect: Death', 1, 1,
  31. torch.rand((100, 100), dtype=torch.float32).round())
  32. return d
  33. def test_input_layer_01():
  34. d = _some_data()
  35. for output_dim in [32, 64, 128]:
  36. layer = InputLayer(d, output_dim)
  37. assert layer.output_dim[0] == output_dim
  38. assert len(layer.node_reps) == 2
  39. assert layer.node_reps[0].shape == (1000, output_dim)
  40. assert layer.node_reps[1].shape == (100, output_dim)
  41. assert layer.data == d
  42. def test_input_layer_02():
  43. d = _some_data()
  44. layer = InputLayer(d, 32)
  45. res = layer()
  46. assert isinstance(res[0], torch.Tensor)
  47. assert isinstance(res[1], torch.Tensor)
  48. assert res[0].shape == (1000, 32)
  49. assert res[1].shape == (100, 32)
  50. assert torch.all(res[0] == layer.node_reps[0])
  51. assert torch.all(res[1] == layer.node_reps[1])
  52. def test_input_layer_03():
  53. if torch.cuda.device_count() == 0:
  54. pytest.skip('No CUDA devices on this host')
  55. d = _some_data()
  56. layer = InputLayer(d, 32)
  57. device = torch.device('cuda:0')
  58. layer = layer.to(device)
  59. print(list(layer.parameters()))
  60. # assert layer.device.type == 'cuda:0'
  61. assert layer.node_reps[0].device == device
  62. assert layer.node_reps[1].device == device
  63. def test_one_hot_input_layer_01():
  64. d = _some_data()
  65. layer = OneHotInputLayer(d)
  66. assert layer.output_dim == [1000, 100]
  67. assert len(layer.node_reps) == 2
  68. assert layer.node_reps[0].shape == (1000, 1000)
  69. assert layer.node_reps[1].shape == (100, 100)
  70. assert layer.data == d
  71. assert layer.is_sparse
  72. def test_one_hot_input_layer_02():
  73. d = _some_data()
  74. layer = OneHotInputLayer(d)
  75. res = layer()
  76. assert isinstance(res[0], torch.Tensor)
  77. assert isinstance(res[1], torch.Tensor)
  78. assert res[0].shape == (1000, 1000)
  79. assert res[1].shape == (100, 100)
  80. assert torch.all(res[0].to_dense() == layer.node_reps[0].to_dense())
  81. assert torch.all(res[1].to_dense() == layer.node_reps[1].to_dense())
  82. def test_one_hot_input_layer_03():
  83. if torch.cuda.device_count() == 0:
  84. pytest.skip('No CUDA devices on this host')
  85. d = _some_data()
  86. layer = OneHotInputLayer(d)
  87. device = torch.device('cuda:0')
  88. layer = layer.to(device)
  89. print(list(layer.parameters()))
  90. # assert layer.device.type == 'cuda:0'
  91. assert layer.node_reps[0].device == device
  92. assert layer.node_reps[1].device == device
  93. def test_decagon_layer_01():
  94. d = _some_data_with_interactions()
  95. in_layer = InputLayer(d)
  96. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  97. def test_decagon_layer_02():
  98. d = _some_data_with_interactions()
  99. in_layer = OneHotInputLayer(d)
  100. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  101. _ = d_layer() # dummy call
  102. def test_decagon_layer_03():
  103. d = _some_data_with_interactions()
  104. in_layer = OneHotInputLayer(d)
  105. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  106. assert d_layer.data == d
  107. assert d_layer.previous_layer == in_layer
  108. assert d_layer.input_dim == [ 1000, 100 ]
  109. assert not d_layer.is_sparse
  110. assert d_layer.keep_prob == 1.
  111. assert d_layer.rel_activation(0.5) == 0.5
  112. x = torch.tensor([-1, 0, 0.5, 1])
  113. assert (d_layer.layer_activation(x) == torch.nn.functional.relu(x)).all()
  114. assert len(d_layer.next_layer_repr) == 2
  115. assert len(d_layer.next_layer_repr[0]) == 2
  116. assert len(d_layer.next_layer_repr[1]) == 4
  117. assert all(map(lambda a: isinstance(a[0], SparseDropoutGraphConvActivation),
  118. d_layer.next_layer_repr[0]))
  119. assert all(map(lambda a: isinstance(a[0], SparseDropoutGraphConvActivation),
  120. d_layer.next_layer_repr[1]))
  121. assert all(map(lambda a: a[0].output_dim == 32,
  122. d_layer.next_layer_repr[0]))
  123. assert all(map(lambda a: a[0].output_dim == 32,
  124. d_layer.next_layer_repr[1]))
  125. def test_decagon_layer_04():
  126. d = _some_data_with_interactions()
  127. in_layer = OneHotInputLayer(d)
  128. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  129. _ = d_layer()