|
- #
- # Copyright (C) Stanislaw Adaszewski, 2020
- # License: GPLv3
- #
-
-
- import scipy.sparse as sp
-
-
- class Batch(object):
- def __init__(self, adjacency_matrix):
- pass
-
- def get(size):
- pass
-
-
- def train_test_split(data, train_size=.8):
- pass
-
-
- class Minibatch(object):
- def __init__(self, data, node_type_row, node_type_column, size):
- self.data = data
- self.adjacency_matrix = data.get_adjacency_matrix(node_type_row, node_type_column)
- self.size = size
- self.order = np.random.permutation(adjacency_matrix.nnz)
- self.count = 0
-
- def reset(self):
- self.count = 0
- self.order = np.random.permutation(adjacency_matrix.nnz)
-
- def __iter__(self):
- adj_mat = self.adjacency_matrix
- size = self.size
- order = np.random.permutation(adj_mat.nnz)
- for i in range(0, len(order), size):
- row = adj_mat.row[i:i + size]
- col = adj_mat.col[i:i + size]
- data = adj_mat.data[i:i + size]
- adj_mat_batch = sp.coo_matrix((data, (row, col)), shape=adj_mat.shape)
- yield adj_mat_batch
- degree = self.adjacency_matrix.sum(1)
-
-
-
- def __len__(self):
- pass
|