IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

147 lignes
5.2KB

  1. #!/usr/bin/env python3
  2. from triacontagon.data import Data
  3. from triacontagon.split import split_data
  4. from triacontagon.model import Model
  5. from triacontagon.loop import TrainLoop
  6. from triacontagon.decode import dedicom_decoder
  7. from triacontagon.util import common_one_hot_encoding
  8. import os
  9. import pandas as pd
  10. from bisect import bisect_left
  11. import torch
  12. import sys
  13. def index(a, x):
  14. i = bisect_left(a, x)
  15. if i != len(a) and a[i] == x:
  16. return i
  17. raise ValueError
  18. def load_data(dev):
  19. path = '/pstore/data/data_science/ref/decagon'
  20. df_combo = pd.read_csv(os.path.join(path, 'bio-decagon-combo.csv'))
  21. df_effcat = pd.read_csv(os.path.join(path, 'bio-decagon-effectcategories.csv'))
  22. df_mono = pd.read_csv(os.path.join(path, 'bio-decagon-mono.csv'))
  23. df_ppi = pd.read_csv(os.path.join(path, 'bio-decagon-ppi.csv'))
  24. df_tgtall = pd.read_csv(os.path.join(path, 'bio-decagon-targets-all.csv'))
  25. df_tgt = pd.read_csv(os.path.join(path, 'bio-decagon-targets.csv'))
  26. lst = [ 'df_combo', 'df_effcat', 'df_mono', 'df_ppi', 'df_tgtall', 'df_tgt' ]
  27. for nam in lst:
  28. print(f'len({nam}): {len(locals()[nam])}')
  29. print(f'{nam}.columns: {locals()[nam].columns}')
  30. genes = set()
  31. genes = genes.union(df_ppi['Gene 1']).union(df_ppi['Gene 2']) \
  32. .union(df_tgtall['Gene']).union(df_tgt['Gene'])
  33. genes = sorted(genes)
  34. print('len(genes):', len(genes))
  35. drugs = set()
  36. drugs = drugs.union(df_combo['STITCH 1']).union(df_combo['STITCH 2']) \
  37. .union(df_mono['STITCH']).union(df_tgtall['STITCH']).union(df_tgt['STITCH'])
  38. drugs = sorted(drugs)
  39. print('len(drugs):', len(drugs))
  40. data = Data()
  41. data.add_vertex_type('Gene', len(genes))
  42. data.add_vertex_type('Drug', len(drugs))
  43. print('Preparing PPI...')
  44. print('Indexing rows...')
  45. rows = [index(genes, g) for g in df_ppi['Gene 1']]
  46. print('Indexing cols...')
  47. cols = [index(genes, g) for g in df_ppi['Gene 2']]
  48. indices = list(zip(rows, cols))
  49. indices = torch.tensor(indices).transpose(0, 1)
  50. values = torch.ones(len(rows))
  51. print('indices.shape:', indices.shape, 'values.shape:', values.shape)
  52. adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(genes),) * 2,
  53. device=dev)
  54. adj_mat = (adj_mat + adj_mat.transpose(0, 1)) / 2
  55. print('adj_mat created')
  56. data.add_edge_type('PPI', 0, 0, [ adj_mat ], dedicom_decoder)
  57. print('OK')
  58. print('Preparing Drug-Gene (Target) edges...')
  59. rows = [index(drugs, d) for d in df_tgtall['STITCH']]
  60. cols = [index(genes, g) for g in df_tgtall['Gene']]
  61. indices = list(zip(rows, cols))
  62. indices = torch.tensor(indices).transpose(0, 1)
  63. values = torch.ones(len(rows))
  64. adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(drugs), len(genes)),
  65. device=dev)
  66. data.add_edge_type('Drug-Gene', 1, 0, [ adj_mat ], dedicom_decoder)
  67. data.add_edge_type('Gene-Drug', 0, 1, [ adj_mat.transpose(0, 1) ], dedicom_decoder)
  68. print('OK')
  69. print('Preparing Drug-Drug (Side Effect) edges...')
  70. fam = data.add_relation_family('Drug-Drug (Side Effect)', 1, 1, True)
  71. print('# of side effects:', len(df_combo), 'unique:', len(df_combo['Polypharmacy Side Effect'].unique()))
  72. adjacency_matrices = []
  73. side_effect_names = []
  74. for eff, df in df_combo.groupby('Polypharmacy Side Effect'):
  75. sys.stdout.write('.') # print(eff, '...')
  76. sys.stdout.flush()
  77. rows = [index(drugs, d) for d in df['STITCH 1']]
  78. cols = [index(drugs, d) for d in df['STITCH 2']]
  79. indices = list(zip(rows, cols))
  80. indices = torch.tensor(indices).transpose(0, 1)
  81. values = torch.ones(len(rows))
  82. adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(drugs), len(drugs)),
  83. device=dev)
  84. adj_mat = (adj_mat + adj_mat.transpose(0, 1)) / 2
  85. adjacency_matrices.append(adj_mat)
  86. side_effect_names.append(df['Polypharmacy Side Effect'])
  87. fam.add_edge_type('Drug-Drug', 1, 1, adjacency_matrices, dedicom_decoder)
  88. print()
  89. print('OK')
  90. return data
  91. def _wrap(obj, method_name):
  92. orig_fn = getattr(obj, method_name)
  93. def fn(*args, **kwargs):
  94. print(f'{method_name}() :: ENTER')
  95. res = orig_fn(*args, **kwargs)
  96. print(f'{method_name}() :: EXIT')
  97. return res
  98. setattr(obj, method_name, fn)
  99. def main():
  100. dev = torch.device('cuda:0')
  101. data = load_data(dev)
  102. train_data, val_data, test_data = split_data(data, (.8, .1, .1))
  103. n = sum(vt.count for vt in data.vertex_types)
  104. model = Model(data, [n, 32, 64], keep_prob=.9,
  105. conv_activation=torch.sigmoid,
  106. dec_activation=torch.sigmoid).to(dev)
  107. initial_repr = common_one_hot_encoding([ vt.count \
  108. for vt in data.vertex_types ], device=dev)
  109. loop = TrainLoop(model, val_data, test_data,
  110. initial_repr, max_epochs=50, batch_size=512,
  111. loss=torch.nn.functional.binary_cross_entropy_with_logits,
  112. lr=0.001)
  113. loop.run()
  114. with open('/pstore/data/data_science/year/2020/adaszews/models/triacontagon/basic_run.pth', 'wb') as f:
  115. torch.save(model.state_dict(), f)
  116. if __name__ == '__main__':
  117. main()