IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

test_dropout.py 889B

12345678910111213141516171819202122232425262728293031323334
  1. from decagon_pytorch.dropout import dropout_sparse
  2. import torch
  3. import numpy as np
  4. def dropout_dense(a, keep_prob):
  5. i = np.array(np.where(a))
  6. v = a[i[0, :], i[1, :]]
  7. # torch.random.manual_seed(0)
  8. n = keep_prob + torch.rand(len(v))
  9. n = torch.floor(n).to(torch.bool)
  10. i = i[:, n]
  11. v = v[n]
  12. x = torch.sparse_coo_tensor(i, v, size=a.shape)
  13. return x * (1./keep_prob)
  14. def test_dropout_sparse():
  15. for i in range(11):
  16. torch.random.manual_seed(i)
  17. a = torch.rand((5, 10))
  18. a[a < .5] = 0
  19. keep_prob=i/10. + np.finfo(np.float32).eps
  20. torch.random.manual_seed(i)
  21. b = dropout_dense(a, keep_prob=keep_prob)
  22. torch.random.manual_seed(i)
  23. c = dropout_sparse(a.to_sparse(), keep_prob=keep_prob)
  24. assert np.all(np.array(b.to_dense()) == np.array(c.to_dense()))