|
- from decagon_pytorch.dropout import dropout_sparse
- import torch
- import numpy as np
-
-
- def dropout_dense(a, keep_prob):
- i = np.array(np.where(a))
- v = a[i[0, :], i[1, :]]
-
- # torch.random.manual_seed(0)
- n = keep_prob + torch.rand(len(v))
- n = torch.floor(n).to(torch.bool)
- i = i[:, n]
- v = v[n]
- x = torch.sparse_coo_tensor(i, v, size=a.shape)
-
- return x * (1./keep_prob)
-
-
- def test_dropout_sparse():
- for i in range(11):
- torch.random.manual_seed(i)
- a = torch.rand((5, 10))
- a[a < .5] = 0
-
- keep_prob=i/10. + np.finfo(np.float32).eps
-
- torch.random.manual_seed(i)
- b = dropout_dense(a, keep_prob=keep_prob)
-
- torch.random.manual_seed(i)
- c = dropout_sparse(a.to_sparse(), keep_prob=keep_prob)
-
- assert np.all(np.array(b.to_dense()) == np.array(c.to_dense()))
|