IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Browse Source

Add cumcount().

master
Stanislaw Adaszewski 4 years ago
parent
commit
4ed3715b83
4 changed files with 110 additions and 65 deletions
  1. +22
    -0
      src/triacontagon/cumcount.py
  2. +2
    -62
      src/triacontagon/deprecated/fastconv.py
  3. +51
    -1
      src/triacontagon/sampling.py
  4. +35
    -2
      tests/triacontagon/test_sampling.py

+ 22
- 0
src/triacontagon/cumcount.py View File

@@ -0,0 +1,22 @@
import numpy as np
def dfill(a):
n = a.size
b = np.concatenate([[0], np.where(a[:-1] != a[1:])[0] + 1, [n]])
return np.arange(n)[b[:-1]].repeat(np.diff(b))
def argunsort(s):
n = s.size
u = np.empty(n, dtype=np.int64)
u[s] = np.arange(n)
return u
def cumcount(a):
n = a.size
s = a.argsort(kind='mergesort')
i = argunsort(s)
b = a[s]
return (np.arange(n) - dfill(b))[i]

+ 2
- 62
src/triacontagon/deprecated/fastconv.py View File

@@ -9,71 +9,11 @@ import torch
from .weights import init_glorot
from .normalize import _sparse_coo_tensor
import types
from .util import _sparse_diag_cat,
_cat
def _sparse_diag_cat(matrices: List[torch.Tensor]):
if len(matrices) == 0:
raise ValueError('The list of matrices must be non-empty')
if not all(m.is_sparse for m in matrices):
raise ValueError('All matrices must be sparse')
if not all(len(m.shape) == 2 for m in matrices):
raise ValueError('All matrices must be 2D')
indices = []
values = []
row_offset = 0
col_offset = 0
for m in matrices:
ind = m._indices().clone()
ind[0] += row_offset
ind[1] += col_offset
indices.append(ind)
values.append(m._values())
row_offset += m.shape[0]
col_offset += m.shape[1]
indices = torch.cat(indices, dim=1)
values = torch.cat(values)
return _sparse_coo_tensor(indices, values, size=(row_offset, col_offset))
def _cat(matrices: List[torch.Tensor]):
if len(matrices) == 0:
raise ValueError('Empty list passed to _cat()')
n = sum(a.is_sparse for a in matrices)
if n != 0 and n != len(matrices):
raise ValueError('All matrices must have the same layout (dense or sparse)')
if not all(a.shape[1:] == matrices[0].shape[1:] for a in matrices):
raise ValueError('All matrices must have the same dimensions apart from dimension 0')
if not matrices[0].is_sparse:
return torch.cat(matrices)
total_rows = sum(a.shape[0] for a in matrices)
indices = []
values = []
row_offset = 0
for a in matrices:
ind = a._indices().clone()
val = a._values()
ind[0] += row_offset
ind = ind.transpose(0, 1)
indices.append(ind)
values.append(val)
row_offset += a.shape[0]
indices = torch.cat(indices).transpose(0, 1)
values = torch.cat(values)
res = _sparse_coo_tensor(indices, values, size=(row_offset, matrices[0].shape[1]))
return res
class FastGraphConv(torch.nn.Module):


+ 51
- 1
src/triacontagon/sampling.py View File

@@ -12,6 +12,8 @@ from typing import List, \
Tuple
from .data import Data, \
EdgeType
from .cumcount import cumcount
import time
def fixed_unigram_candidate_sampler(
@@ -69,14 +71,62 @@ def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
return edges_pos, degrees
def get_true_classes(adj_mat: torch.Tensor) -> torch.Tensor:
indices = adj_mat.indices()
row_count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
#print('indices[0]:', indices[0], count[indices[0]])
row_count = row_count.index_add(0, indices[0],
torch.ones(indices.shape[1], dtype=torch.long))
#print('count:', count)
max_true_classes = torch.max(row_count).item()
#print('max_true_classes:', max_true_classes)
true_classes = torch.full((adj_mat.shape[0], max_true_classes),
-1, dtype=torch.long)
# inv = torch.unique(indices[0], return_inverse=True)
# indices = indices.copy()
# true_classes[indices[0], 0] = indices[1]
t = time.time()
cc = cumcount(indices[0].cpu().numpy())
print('cumcount() took:', time.time() - t)
cc = torch.tensor(cc)
t = time.time()
true_classes[indices[0], cc] = indices[1]
print('assignment took:', time.time() - t)
''' count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
for i in range(indices.shape[1]):
# print('looping...')
row = indices[0, i]
col = indices[1, i]
#print('row:', row, 'col:', col, 'count[row]:', count[row])
true_classes[row, count[row]] = col
count[row] += 1 '''
t = time.time()
true_classes = torch.repeat_interleave(true_classes, row_count, dim=0)
print('repeat_interleave() took:', time.time() - t)
return true_classes
def negative_sample_adj_mat(adj_mat: torch.Tensor) -> torch.Tensor:
if not isinstance(adj_mat, torch.Tensor):
raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
edges_pos, degrees = get_edges_and_degrees(adj_mat)
true_classes = get_true_classes(adj_mat)
# true_classes = edges_pos[:, 1].view(-1, 1)
# print('true_classes:', true_classes)
neg_neighbors = fixed_unigram_candidate_sampler(
edges_pos[:, 1].view(-1, 1), degrees, 0.75).to(adj_mat.device)
true_classes, degrees, 0.75).to(adj_mat.device)
print('neg_neighbors:', neg_neighbors)
edges_neg = torch.cat([ edges_pos[:, 0].view(-1, 1),
neg_neighbors.view(-1, 1) ], 1)


+ 35
- 2
tests/triacontagon/test_sampling.py View File

@@ -1,8 +1,41 @@
from triacontagon.data import Data
from triacontagon.sampling import negative_sample_adj_mat, \
from triacontagon.sampling import get_true_classes, \
negative_sample_adj_mat, \
negative_sample_data
from triacontagon.decode import dedicom_decoder
import torch
import time
def test_get_true_classes_01():
adj_mat = torch.tensor([
[0, 1, 0, 1, 0],
[0, 0, 0, 0, 1],
[1, 1, 0, 0, 0],
[0, 0, 1, 0, 1],
[0, 1, 0, 0, 0]
], dtype=torch.float).to_sparse()
true_classes = get_true_classes(adj_mat)
print('true_classes:', true_classes)
assert torch.all(true_classes == torch.tensor([
[1, 3],
[4, -1],
[0, 1],
[2, 4],
[1, -1]
]))
def test_get_true_classes_02():
adj_mat = torch.rand(2000, 2000).round().to_sparse()
t = time.time()
true_classes = get_true_classes(adj_mat)
print('Elapsed:', time.time() - t)
print('true_classes.shape:', true_classes.shape)
def test_negative_sample_adj_mat_01():
@@ -16,7 +49,7 @@ def test_negative_sample_adj_mat_01():
print('adj_mat:', adj_mat)
adj_mat_neg = negative_sample_adj_mat(adj_mat)
adj_mat_neg = negative_sample_adj_mat(adj_mat.to_sparse())
print('adj_mat_neg:', adj_mat_neg.to_dense())


Loading…
Cancel
Save