IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Browse Source

torch_stablesort_cpp seems to work.

master
Stanislaw Adaszewski 4 years ago
parent
commit
747156a971
6 changed files with 175 additions and 116 deletions
  1. +4
    -0
      .gitignore
  2. +41
    -0
      src/torch_stablesort/dispatch.h
  3. +8
    -2
      src/torch_stablesort/dispatch_test.cpp
  4. +8
    -0
      src/torch_stablesort/openmp_test.cpp
  5. +2
    -1
      src/torch_stablesort/setup.py
  6. +112
    -113
      src/torch_stablesort/torch_stablesort.cpp

+ 4
- 0
.gitignore View File

@@ -5,3 +5,7 @@ __pycache__
/docs/icosagon/*.png
/experiments/decagon_run/profiler_results
/experiments/decagon_run_effcat/profiler_results
/src/torch_stablesort/dist
/src/torch_stablesort/build
/src/torch_stablesort/torch_stablesort.egg-info
a.out

+ 41
- 0
src/torch_stablesort/dispatch.h View File

@@ -0,0 +1,41 @@
#include <utility>
template<template<typename T> class F, typename R, typename... Ts>
R dispatch(torch::Tensor input, Ts&& ... args) {
switch(input.type().scalarType()) {
case torch::ScalarType::Double:
return F<double>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Float:
return F<float>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Half:
throw std::runtime_error("Half-precision float not supported");
case torch::ScalarType::ComplexHalf:
throw std::runtime_error("Half-precision complex float not supported");
case torch::ScalarType::ComplexFloat:
throw std::runtime_error("Complex float not supported");
case torch::ScalarType::ComplexDouble:
throw std::runtime_error("Complex double not supported");
case torch::ScalarType::Long:
return F<int64_t>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Int:
return F<int32_t>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Short:
return F<int16_t>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Char:
return F<int8_t>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Byte:
return F<uint8_t>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::Bool:
return F<bool>()(input, std::forward<Ts>(args)...);
case torch::ScalarType::QInt32:
throw std::runtime_error("QInt32 not supported");
//case torch::ScalarType::QInt16:
// throw std::runtime_error("QInt16 not supported");
case torch::ScalarType::QInt8:
throw std::runtime_error("QInt8 not supported");
case torch::ScalarType::BFloat16:
throw std::runtime_error("BFloat16 not supported");
default:
throw std::runtime_error("Unknown scalar type");
}
}

+ 8
- 2
src/torch_stablesort/dispatch_test.cpp View File

@@ -12,14 +12,20 @@ void dispatch(int x, Ts&& ...args) {
template<typename T>
struct bla {
void operator()(int&& a, char&& b, double&& c) const {
std::cout << typeid(T).name() << " " << a << " " << b << " " << c << std::endl;
std::cout << sizeof(T) << " " << typeid(T).name() << " " << a << " " << b << " " << c << std::endl;
}
};
template<typename T>
struct bla128 {
void operator()(int&& a, char&& b, __float128&& c) const {
std::cout << sizeof(T) << " " << typeid(T).name() << " " << a << " " << b << " " << (double) c << std::endl;
}
};
main() {
std::cout << "main()" << std::endl;
//bla<double>()(1, 'a', 5.5);
dispatch<bla, int, char, double>(5, 1, 'a', 5.5);
dispatch<bla128, int, char, __float128>(5, 1, 'a', (__float128) 5.5);
dispatch<bla, int, char, double>(-5, 1, 'a', 5.5);
}

+ 8
- 0
src/torch_stablesort/openmp_test.cpp View File

@@ -0,0 +1,8 @@
#include <iostream>

main() {
#pragma omp parallel for
for (int i = 0; i < 10; i++) {
std::cout << i << std::endl;
}
}

+ 2
- 1
src/torch_stablesort/setup.py View File

@@ -3,5 +3,6 @@ from torch.utils import cpp_extension
setup(name='torch_stablesort',
ext_modules=[cpp_extension.CppExtension('torch_stablesort_cpp',
['torch_stablesort.cpp'])],
['torch_stablesort.cpp'],
extra_compile_args=['-fopenmp', '-ggdb'])],
cmdclass={'build_ext': cpp_extension.BuildExtension})

+ 112
- 113
src/torch_stablesort/torch_stablesort.cpp View File

@@ -4,137 +4,136 @@
#include <vector>
#include <algorithm>
#include "dispatch.h"
template<typename fun, typename... Ts>
void dispatch(torch::Tensor input, Ts&& ... args) {
switch(input.type().scalarType()) {
case torch::ScalarType::Double:
return fun<double>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Float:
return fun<float>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Half:
throw std::runtime_error("Half-precision float not supported");
case torch::ScalarType::ComplexHalf:
throw std::runtime_error("Half-precision complex float not supported");
case torch::ScalarType::ComplexFloat:
return fun<float64_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::ComplexDouble:
return fun<float128_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Long:
return fun<int64_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Int:
return fun<int32_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Short:
return fun<int16_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Char:
return fun<int8_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Byte:
return fun<uint8_t>(input, std::forward<Ts>(args)...);
case torch::ScalarType::Bool:
return fun<bool>(input, std::forward<Ts>(args)...);
case torch::ScalarType::QInt32:
throw std::runtime_error("QInt32 not supported");
case torch::ScalarType::QInt16:
throw std::runtime_error("QInt16 not supported");
case torch::ScalarType::QInt8:
throw std::runtime_error("QInt8 not supported");
case torch::ScalarType::BFloat16:
throw std::runtime_error("BFloat16 not supported");
default:
throw std::runtime_error("Unknown scalar type");
}
}
template<typename T>
struct stable_sort_impl {
std::vector<torch::Tensor> operator()(
torch::Tensor input,
int dim,
bool descending,
torch::optional<std::tuple<torch::Tensor, torch::Tensor>> out
) const {
if (input.is_sparse())
throw std::runtime_error("Sparse tensors are not supported");
std::vector<at::Tensor> stable_sort_forward(
torch::Tensor input,
int dim,
bool descending,
torch::optional<torch::Tensor> out = nullptr) {
if (input.device().type() != torch::DeviceType::CPU)
throw std::runtime_error("Only CPU tensors are supported");
if (out != torch::nullopt)
throw std::runtime_error("out argument is not supported");
auto in = (dim != -1) ?
torch::transpose(input, dim, -1) :
input;
auto X = torch::cat({old_h, input}, /*dim=*/1);
auto in_sizes = in.sizes();
auto gate_weights = torch::addmm(bias, X, weights.transpose(0, 1));
auto gates = gate_weights.chunk(3, /*dim=*/1);
// std::cout << "in_sizes: " << in_sizes << std::endl;
auto input_gate = torch::sigmoid(gates[0]);
auto output_gate = torch::sigmoid(gates[1]);
auto candidate_cell = torch::elu(gates[2], /*alpha=*/1.0);
in = in.view({ -1, in.size(-1) }).contiguous();
auto new_cell = old_cell + candidate_cell * input_gate;
auto new_h = torch::tanh(new_cell) * output_gate;
auto in_outer_stride = in.stride(-2);
auto in_inner_stride = in.stride(-1);
return {new_h,
new_cell,
input_gate,
output_gate,
candidate_cell,
X,
gate_weights};
}
auto pin = static_cast<T*>(in.data_ptr());
/ tanh'(z) = 1 - tanh^2(z)
torch::Tensor d_tanh(torch::Tensor z) {
return 1 - z.tanh().pow(2);
}
auto x = in.clone();
// elu'(z) = relu'(z) + { alpha * exp(z) if (alpha * (exp(z) - 1)) < 0, else 0}
torch::Tensor d_elu(torch::Tensor z, torch::Scalar alpha = 1.0) {
auto e = z.exp();
auto mask = (alpha * (e - 1)) < 0;
return (z > 0).type_as(z) + mask.type_as(z) * (alpha * e);
}
auto x_outer_stride = x.stride(-2);
auto x_inner_stride = x.stride(-1);
std::vector<torch::Tensor> stable_sort_backward(
torch::Tensor grad_h,
torch::Tensor grad_cell,
torch::Tensor new_cell,
torch::Tensor input_gate,
torch::Tensor output_gate,
torch::Tensor candidate_cell,
torch::Tensor X,
torch::Tensor gate_weights,
torch::Tensor weights) {
auto d_output_gate = torch::tanh(new_cell) * grad_h;
auto d_tanh_new_cell = output_gate * grad_h;
auto d_new_cell = d_tanh(new_cell) * d_tanh_new_cell + grad_cell;
auto d_old_cell = d_new_cell;
auto d_candidate_cell = input_gate * d_new_cell;
auto d_input_gate = candidate_cell * d_new_cell;
auto gates = gate_weights.chunk(3, /*dim=*/1);
d_input_gate *= d_sigmoid(gates[0]);
d_output_gate *= d_sigmoid(gates[1]);
d_candidate_cell *= d_elu(gates[2]);
auto d_gates =
torch::cat({d_input_gate, d_output_gate, d_candidate_cell}, /*dim=*/1);
auto d_weights = d_gates.t().mm(X);
auto d_bias = d_gates.sum(/*dim=*/0, /*keepdim=*/true);
auto d_X = d_gates.mm(weights);
const auto state_size = grad_h.size(1);
auto d_old_h = d_X.slice(/*dim=*/1, 0, state_size);
auto d_input = d_X.slice(/*dim=*/1, state_size);
return {d_old_h, d_input, d_weights, d_bias, d_old_cell};
}
auto n_cols = x.size(1);
auto n_rows = x.size(0);
auto px = static_cast<T*>(x.data_ptr());
std::vector<torch::Tensor> stable_argsort_forward() {
auto y = torch::empty({ n_rows, n_cols },
torch::TensorOptions().dtype(torch::kInt64));
}
auto y_outer_stride = y.stride(-2);
auto y_inner_stride = y.stride(-1);
auto py = static_cast<int64_t*>(y.data_ptr());
if (descending) {
#pragma omp parallel for
for (decltype(n_rows) i = 0; i < n_rows; i++) {
std::vector<int64_t> indices(n_cols);
for (decltype(n_cols) k = 0; k < n_cols; k++) {
indices[k] = k;
}
std::stable_sort(std::begin(indices), std::end(indices),
[pin, i, in_outer_stride, in_inner_stride](const auto &a, const auto &b) {
auto va = pin[i * in_outer_stride + a * in_inner_stride];
auto vb = pin[i * in_outer_stride + b * in_inner_stride];
return (vb < va);
});
for (decltype(n_cols) k = 0; k < n_cols; k++) {
py[i * y_outer_stride + k * y_inner_stride] = indices[k];
px[i * x_outer_stride + k * x_inner_stride] =
pin[i * in_outer_stride + indices[k] * in_inner_stride];
}
}
std::vector<torch::Tensor> stable_argsort_backward() {
} else {
#pragma omp parallel for
for (decltype(n_rows) i = 0; i < n_rows; i++) {
std::vector<int64_t> indices(n_cols);
for (decltype(n_cols) k = 0; k < n_cols; k++) {
indices[k] = k;
}
std::stable_sort(std::begin(indices), std::end(indices),
[pin, i, in_outer_stride, in_inner_stride](const auto &a, const auto &b) {
auto va = pin[i * in_outer_stride + a * in_inner_stride];
auto vb = pin[i * in_outer_stride + b * in_inner_stride];
return (va < vb);
});
for (decltype(n_cols) k = 0; k < n_cols; k++) {
py[i * y_outer_stride + k * y_inner_stride] = indices[k];
px[i * x_outer_stride + k * x_inner_stride] =
pin[i * in_outer_stride + indices[k] * in_inner_stride];
}
}
}
// std::cout << "Here" << std::endl;
x = x.view(in_sizes);
y = y.view(in_sizes);
x = (dim == -1) ?
x :
torch::transpose(x, dim, -1).contiguous();
y = (dim == -1) ?
y :
torch::transpose(y, dim, -1).contiguous();
// std::cout << "Here 2" << std::endl;
return { x, y };
}
};
std::vector<torch::Tensor> stable_sort(
torch::Tensor input,
int dim = -1,
bool descending = false,
torch::optional<std::tuple<torch::Tensor, torch::Tensor>> out = torch::nullopt) {
return dispatch<stable_sort_impl, std::vector<torch::Tensor>>(
input, dim, descending, out);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("stable_sort_forward", &stable_sort_forward, "Stable sort forward");
m.def("stable_sort_backward", &stable_sort_backward, "Stable sort backward");
m.def("stable_argsort_forward", &stable_argsort_forward, "Stable argsort forward");
m.def("stable_argsort_backward", &stable_argsort_backward, "Stable argsort backward");
m.def("stable_sort", &stable_sort, "Stable sort",
py::arg("input"), py::arg("dim") = -1, py::arg("descending") = false,
py::arg("out") = nullptr);
}

Loading…
Cancel
Save