|
|
@@ -14,6 +14,7 @@ from typing import List, \ |
|
|
|
Type
|
|
|
|
from .decode import DEDICOMDecoder, \
|
|
|
|
BilinearDecoder
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def _equal(x: torch.Tensor, y: torch.Tensor):
|
|
|
@@ -23,15 +24,29 @@ def _equal(x: torch.Tensor, y: torch.Tensor): |
|
|
|
if not x.is_sparse:
|
|
|
|
return (x == y)
|
|
|
|
|
|
|
|
# if x.shape != y.shape:
|
|
|
|
# return torch.tensor(0, dtype=torch.uint8)
|
|
|
|
|
|
|
|
return ((x - y).coalesce().values() == 0)
|
|
|
|
|
|
|
|
x = x.coalesce()
|
|
|
|
indices_x = list(map(tuple, x.indices().transpose(0, 1)))
|
|
|
|
order_x = sorted(range(len(indices_x)), key=lambda idx: indices_x[idx])
|
|
|
|
indices_x = np.empty(x.indices().shape[1], dtype=np.object)
|
|
|
|
indices_x[:] = list(map(tuple, x.indices().transpose(0, 1)))
|
|
|
|
order_x = np.argsort(indices_x)
|
|
|
|
#order_x = sorted(range(len(indices_x)), key=lambda idx: indices_x[idx])
|
|
|
|
|
|
|
|
y = y.coalesce()
|
|
|
|
indices_y = list(map(tuple, y.indices().transpose(0, 1)))
|
|
|
|
order_y = sorted(range(len(indices_y)), key=lambda idx: indices_y[idx])
|
|
|
|
indices_y = np.empty(y.indices().shape[1], dtype=np.object)
|
|
|
|
indices_y[:] = list(map(tuple, y.indices().transpose(0, 1)))
|
|
|
|
order_y = np.argsort(indices_y)
|
|
|
|
# order_y = sorted(range(len(indices_y)), key=lambda idx: indices_y[idx])
|
|
|
|
|
|
|
|
# print(indices_x.shape, indices_y.shape)
|
|
|
|
|
|
|
|
if not len(indices_x) == len(indices_y):
|
|
|
|
return torch.tensor(0, dtype=torch.uint8)
|
|
|
|
|
|
|
|
if not indices_x == indices_y:
|
|
|
|
if not np.all(indices_x[order_x] == indices_y[order_y]):
|
|
|
|
return torch.tensor(0, dtype=torch.uint8)
|
|
|
|
|
|
|
|
return (x.values()[order_x] == y.values()[order_y])
|
|
|
|