IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Pārlūkot izejas kodu

Bring more elements to icosagon.

master
Stanislaw Adaszewski pirms 4 gadiem
vecāks
revīzija
d503fb5738
5 mainītis faili ar 257 papildinājumiem un 0 dzēšanām
  1. +85
    -0
      src/icosagon/convolve.py
  2. +33
    -0
      src/icosagon/dropout.py
  3. +19
    -0
      src/icosagon/weights.py
  4. +94
    -0
      tests/icosagon/test_convolve.py
  5. +26
    -0
      tests/icosagon/test_dropout.py

+ 85
- 0
src/icosagon/convolve.py Parādīt failu

@@ -0,0 +1,85 @@
#
# Copyright (C) Stanislaw Adaszewski, 2020
# License: GPLv3
#
import torch
from .dropout import dropout_sparse, \
dropout_dense
from .weights import init_glorot
from typing import List, Callable
class GraphConv(torch.nn.Module):
"""Convolution layer for sparse AND dense inputs."""
def __init__(self, in_channels: int, out_channels: int,
adjacency_matrix: torch.Tensor, **kwargs) -> None:
super().__init__(**kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.weight = init_glorot(in_channels, out_channels)
self.adjacency_matrix = adjacency_matrix
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = torch.sparse.mm(x, self.weight) \
if x.is_sparse \
else torch.mm(x, self.weight)
x = torch.sparse.mm(self.adjacency_matrix, x) \
if self.adjacency_matrix.is_sparse \
else torch.mm(self.adjacency_matrix, x)
return x
class DropoutGraphConvActivation(torch.nn.Module):
def __init__(self, input_dim: int, output_dim: int,
adjacency_matrix: torch.Tensor, keep_prob: float=1.,
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu,
**kwargs) -> None:
super().__init__(**kwargs)
self.input_dim = input_dim
self.output_dim = output_dim
self.adjacency_matrix = adjacency_matrix
self.keep_prob = keep_prob
self.activation = activation
self.graph_conv = GraphConv(input_dim, output_dim, adjacency_matrix)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = dropout_sparse(x, self.keep_prob) \
if x.is_sparse \
else dropout_dense(x, self.keep_prob)
x = self.graph_conv(x)
x = self.activation(x)
return x
class MultiDGCA(torch.nn.Module):
def __init__(self, input_dim: List[int], output_dim: int,
adjacency_matrices: List[torch.Tensor], keep_prob: float=1.,
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu,
**kwargs) -> None:
super().__init__(**kwargs)
self.input_dim = input_dim
self.output_dim = output_dim
self.adjacency_matrices = adjacency_matrices
self.keep_prob = keep_prob
self.activation = activation
self.dgca = None
self.build()
def build(self):
if len(self.input_dim) != len(self.adjacency_matrices):
raise ValueError('input_dim must have the same length as adjacency_matrices')
self.dgca = []
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices):
self.dgca.append(DenseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation))
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
if not isinstance(x, list):
raise ValueError('x must be a list of tensors')
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype)
for i, f in enumerate(self.dgca):
out += f(x[i])
out = torch.nn.functional.normalize(out, p=2, dim=1)
return out

+ 33
- 0
src/icosagon/dropout.py Parādīt failu

@@ -0,0 +1,33 @@
#
# Copyright (C) Stanislaw Adaszewski, 2020
# License: GPLv3
#
import torch
def dropout_sparse(x, keep_prob):
x = x.coalesce()
i = x._indices()
v = x._values()
size = x.size()
n = keep_prob + torch.rand(len(v))
n = torch.floor(n).to(torch.bool)
i = i[:,n]
v = v[n]
x = torch.sparse_coo_tensor(i, v, size=size)
return x * (1./keep_prob)
def dropout_dense(x, keep_prob):
x = x.clone().detach()
i = torch.nonzero(x)
n = keep_prob + torch.rand(len(i))
n = (1. - torch.floor(n)).to(torch.bool)
x[i[n, 0], i[n, 1]] = 0.
return x * (1./keep_prob)

+ 19
- 0
src/icosagon/weights.py Parādīt failu

@@ -0,0 +1,19 @@
#
# Copyright (C) Stanislaw Adaszewski, 2020
# License: GPLv3
#
import torch
import numpy as np
def init_glorot(in_channels, out_channels, dtype=torch.float32):
"""Create a weight variable with Glorot & Bengio (AISTATS 2010)
initialization.
"""
init_range = np.sqrt(6.0 / (in_channels + out_channels))
initial = -init_range + 2 * init_range * \
torch.rand(( in_channels, out_channels ), dtype=dtype)
initial = initial.requires_grad_(True)
return initial

+ 94
- 0
tests/icosagon/test_convolve.py Parādīt failu

@@ -0,0 +1,94 @@
from icosagon.convolve import GraphConv, \
DropoutGraphConvActivation, \
MultiDGCA
import torch
def _test_graph_conv_01(use_sparse: bool):
adj_mat = torch.rand((10, 20))
adj_mat[adj_mat < .5] = 0
adj_mat = torch.ceil(adj_mat)
node_reprs = torch.eye(20)
graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \
if use_sparse else adj_mat)
graph_conv.weight = torch.eye(20)
res = graph_conv(node_reprs)
assert torch.all(res == adj_mat)
def _test_graph_conv_02(use_sparse: bool):
adj_mat = torch.rand((10, 20))
adj_mat[adj_mat < .5] = 0
adj_mat = torch.ceil(adj_mat)
node_reprs = torch.eye(20)
graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \
if use_sparse else adj_mat)
graph_conv.weight = torch.eye(20) * 2
res = graph_conv(node_reprs)
assert torch.all(res == adj_mat * 2)
def _test_graph_conv_03(use_sparse: bool):
adj_mat = torch.tensor([
[1, 0, 1, 0, 1, 0], # [1, 0, 0]
[1, 0, 1, 0, 0, 1], # [1, 0, 0]
[1, 1, 0, 1, 0, 0], # [0, 1, 0]
[0, 0, 0, 1, 0, 1], # [0, 1, 0]
[1, 1, 1, 1, 1, 1], # [0, 0, 1]
[0, 0, 0, 1, 1, 1] # [0, 0, 1]
], dtype=torch.float32)
expect = torch.tensor([
[1, 1, 1],
[1, 1, 1],
[2, 1, 0],
[0, 1, 1],
[2, 2, 2],
[0, 1, 2]
], dtype=torch.float32)
node_reprs = torch.eye(6)
graph_conv = GraphConv(6, 3, adj_mat.to_sparse() \
if use_sparse else adj_mat)
graph_conv.weight = torch.tensor([
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 1]
], dtype=torch.float32)
res = graph_conv(node_reprs)
assert torch.all(res == expect)
def test_graph_conv_dense_01():
_test_graph_conv_01(use_sparse=False)
def test_graph_conv_dense_02():
_test_graph_conv_02(use_sparse=False)
def test_graph_conv_dense_03():
_test_graph_conv_03(use_sparse=False)
def test_graph_conv_sparse_01():
_test_graph_conv_01(use_sparse=True)
def test_graph_conv_sparse_02():
_test_graph_conv_02(use_sparse=True)
def test_graph_conv_sparse_03():
_test_graph_conv_03(use_sparse=True)

+ 26
- 0
tests/icosagon/test_dropout.py Parādīt failu

@@ -0,0 +1,26 @@
from icosagon.dropout import dropout_sparse, \
dropout_dense
import torch
import numpy as np
def test_dropout_01():
for i in range(11):
torch.random.manual_seed(i)
a = torch.rand((5, 10))
a[a < .5] = 0
keep_prob=i/10. + np.finfo(np.float32).eps
torch.random.manual_seed(i)
b = dropout_dense(a, keep_prob=keep_prob)
torch.random.manual_seed(i)
c = dropout_sparse(a.to_sparse(), keep_prob=keep_prob)
print('keep_prob:', keep_prob)
print('a:', a.detach().cpu().numpy())
print('b:', b.detach().cpu().numpy())
print('c:', c, c.to_dense().detach().cpu().numpy())
assert torch.all(b == c.to_dense())

Notiek ielāde…
Atcelt
Saglabāt