@@ -0,0 +1,85 @@ | |||||
# | |||||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||||
# License: GPLv3 | |||||
# | |||||
import torch | |||||
from .dropout import dropout_sparse, \ | |||||
dropout_dense | |||||
from .weights import init_glorot | |||||
from typing import List, Callable | |||||
class GraphConv(torch.nn.Module): | |||||
"""Convolution layer for sparse AND dense inputs.""" | |||||
def __init__(self, in_channels: int, out_channels: int, | |||||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||||
super().__init__(**kwargs) | |||||
self.in_channels = in_channels | |||||
self.out_channels = out_channels | |||||
self.weight = init_glorot(in_channels, out_channels) | |||||
self.adjacency_matrix = adjacency_matrix | |||||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||||
x = torch.sparse.mm(x, self.weight) \ | |||||
if x.is_sparse \ | |||||
else torch.mm(x, self.weight) | |||||
x = torch.sparse.mm(self.adjacency_matrix, x) \ | |||||
if self.adjacency_matrix.is_sparse \ | |||||
else torch.mm(self.adjacency_matrix, x) | |||||
return x | |||||
class DropoutGraphConvActivation(torch.nn.Module): | |||||
def __init__(self, input_dim: int, output_dim: int, | |||||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||||
**kwargs) -> None: | |||||
super().__init__(**kwargs) | |||||
self.input_dim = input_dim | |||||
self.output_dim = output_dim | |||||
self.adjacency_matrix = adjacency_matrix | |||||
self.keep_prob = keep_prob | |||||
self.activation = activation | |||||
self.graph_conv = GraphConv(input_dim, output_dim, adjacency_matrix) | |||||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||||
x = dropout_sparse(x, self.keep_prob) \ | |||||
if x.is_sparse \ | |||||
else dropout_dense(x, self.keep_prob) | |||||
x = self.graph_conv(x) | |||||
x = self.activation(x) | |||||
return x | |||||
class MultiDGCA(torch.nn.Module): | |||||
def __init__(self, input_dim: List[int], output_dim: int, | |||||
adjacency_matrices: List[torch.Tensor], keep_prob: float=1., | |||||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||||
**kwargs) -> None: | |||||
super().__init__(**kwargs) | |||||
self.input_dim = input_dim | |||||
self.output_dim = output_dim | |||||
self.adjacency_matrices = adjacency_matrices | |||||
self.keep_prob = keep_prob | |||||
self.activation = activation | |||||
self.dgca = None | |||||
self.build() | |||||
def build(self): | |||||
if len(self.input_dim) != len(self.adjacency_matrices): | |||||
raise ValueError('input_dim must have the same length as adjacency_matrices') | |||||
self.dgca = [] | |||||
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices): | |||||
self.dgca.append(DenseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation)) | |||||
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: | |||||
if not isinstance(x, list): | |||||
raise ValueError('x must be a list of tensors') | |||||
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype) | |||||
for i, f in enumerate(self.dgca): | |||||
out += f(x[i]) | |||||
out = torch.nn.functional.normalize(out, p=2, dim=1) | |||||
return out |
@@ -0,0 +1,33 @@ | |||||
# | |||||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||||
# License: GPLv3 | |||||
# | |||||
import torch | |||||
def dropout_sparse(x, keep_prob): | |||||
x = x.coalesce() | |||||
i = x._indices() | |||||
v = x._values() | |||||
size = x.size() | |||||
n = keep_prob + torch.rand(len(v)) | |||||
n = torch.floor(n).to(torch.bool) | |||||
i = i[:,n] | |||||
v = v[n] | |||||
x = torch.sparse_coo_tensor(i, v, size=size) | |||||
return x * (1./keep_prob) | |||||
def dropout_dense(x, keep_prob): | |||||
x = x.clone().detach() | |||||
i = torch.nonzero(x) | |||||
n = keep_prob + torch.rand(len(i)) | |||||
n = (1. - torch.floor(n)).to(torch.bool) | |||||
x[i[n, 0], i[n, 1]] = 0. | |||||
return x * (1./keep_prob) |
@@ -0,0 +1,19 @@ | |||||
# | |||||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||||
# License: GPLv3 | |||||
# | |||||
import torch | |||||
import numpy as np | |||||
def init_glorot(in_channels, out_channels, dtype=torch.float32): | |||||
"""Create a weight variable with Glorot & Bengio (AISTATS 2010) | |||||
initialization. | |||||
""" | |||||
init_range = np.sqrt(6.0 / (in_channels + out_channels)) | |||||
initial = -init_range + 2 * init_range * \ | |||||
torch.rand(( in_channels, out_channels ), dtype=dtype) | |||||
initial = initial.requires_grad_(True) | |||||
return initial |
@@ -0,0 +1,94 @@ | |||||
from icosagon.convolve import GraphConv, \ | |||||
DropoutGraphConvActivation, \ | |||||
MultiDGCA | |||||
import torch | |||||
def _test_graph_conv_01(use_sparse: bool): | |||||
adj_mat = torch.rand((10, 20)) | |||||
adj_mat[adj_mat < .5] = 0 | |||||
adj_mat = torch.ceil(adj_mat) | |||||
node_reprs = torch.eye(20) | |||||
graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \ | |||||
if use_sparse else adj_mat) | |||||
graph_conv.weight = torch.eye(20) | |||||
res = graph_conv(node_reprs) | |||||
assert torch.all(res == adj_mat) | |||||
def _test_graph_conv_02(use_sparse: bool): | |||||
adj_mat = torch.rand((10, 20)) | |||||
adj_mat[adj_mat < .5] = 0 | |||||
adj_mat = torch.ceil(adj_mat) | |||||
node_reprs = torch.eye(20) | |||||
graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \ | |||||
if use_sparse else adj_mat) | |||||
graph_conv.weight = torch.eye(20) * 2 | |||||
res = graph_conv(node_reprs) | |||||
assert torch.all(res == adj_mat * 2) | |||||
def _test_graph_conv_03(use_sparse: bool): | |||||
adj_mat = torch.tensor([ | |||||
[1, 0, 1, 0, 1, 0], # [1, 0, 0] | |||||
[1, 0, 1, 0, 0, 1], # [1, 0, 0] | |||||
[1, 1, 0, 1, 0, 0], # [0, 1, 0] | |||||
[0, 0, 0, 1, 0, 1], # [0, 1, 0] | |||||
[1, 1, 1, 1, 1, 1], # [0, 0, 1] | |||||
[0, 0, 0, 1, 1, 1] # [0, 0, 1] | |||||
], dtype=torch.float32) | |||||
expect = torch.tensor([ | |||||
[1, 1, 1], | |||||
[1, 1, 1], | |||||
[2, 1, 0], | |||||
[0, 1, 1], | |||||
[2, 2, 2], | |||||
[0, 1, 2] | |||||
], dtype=torch.float32) | |||||
node_reprs = torch.eye(6) | |||||
graph_conv = GraphConv(6, 3, adj_mat.to_sparse() \ | |||||
if use_sparse else adj_mat) | |||||
graph_conv.weight = torch.tensor([ | |||||
[1, 0, 0], | |||||
[1, 0, 0], | |||||
[0, 1, 0], | |||||
[0, 1, 0], | |||||
[0, 0, 1], | |||||
[0, 0, 1] | |||||
], dtype=torch.float32) | |||||
res = graph_conv(node_reprs) | |||||
assert torch.all(res == expect) | |||||
def test_graph_conv_dense_01(): | |||||
_test_graph_conv_01(use_sparse=False) | |||||
def test_graph_conv_dense_02(): | |||||
_test_graph_conv_02(use_sparse=False) | |||||
def test_graph_conv_dense_03(): | |||||
_test_graph_conv_03(use_sparse=False) | |||||
def test_graph_conv_sparse_01(): | |||||
_test_graph_conv_01(use_sparse=True) | |||||
def test_graph_conv_sparse_02(): | |||||
_test_graph_conv_02(use_sparse=True) | |||||
def test_graph_conv_sparse_03(): | |||||
_test_graph_conv_03(use_sparse=True) |
@@ -0,0 +1,26 @@ | |||||
from icosagon.dropout import dropout_sparse, \ | |||||
dropout_dense | |||||
import torch | |||||
import numpy as np | |||||
def test_dropout_01(): | |||||
for i in range(11): | |||||
torch.random.manual_seed(i) | |||||
a = torch.rand((5, 10)) | |||||
a[a < .5] = 0 | |||||
keep_prob=i/10. + np.finfo(np.float32).eps | |||||
torch.random.manual_seed(i) | |||||
b = dropout_dense(a, keep_prob=keep_prob) | |||||
torch.random.manual_seed(i) | |||||
c = dropout_sparse(a.to_sparse(), keep_prob=keep_prob) | |||||
print('keep_prob:', keep_prob) | |||||
print('a:', a.detach().cpu().numpy()) | |||||
print('b:', b.detach().cpu().numpy()) | |||||
print('c:', c, c.to_dense().detach().cpu().numpy()) | |||||
assert torch.all(b == c.to_dense()) |