IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Stanislaw Adaszewski 4c8c06c63c Add triacontagon.TrainLoop. vor 4 Jahren
docker Start working on experiments/decagon_run. vor 4 Jahren
docs Add Batcher. vor 4 Jahren
experiments Add Citing note. vor 4 Jahren
src Add triacontagon.TrainLoop. vor 4 Jahren
tests Add tests for _same_data_org() and DualBatcher. vor 4 Jahren
.empty Initial commit. vor 5 Jahren
.gitignore Add test_timing_05(). vor 4 Jahren
README.md Add Citing note. vor 4 Jahren
requirements.txt Start icosagon. vor 4 Jahren

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

Citing

If you use this code in your research please cite this repository as:

Adaszewski S. (2020) https://code.adared.ch/sadaszewski/decagon-pytorch

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.