IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。
Stanislaw Adaszewski 56fdd9ffeb Make negative sampling more correct and more efficient at the same time. 4年前
docker Start working on experiments/decagon_run. 4年前
docs Work on required vertices per layer. 4年前
experiments Add Citing note. 4年前
src Make negative sampling more correct and more efficient at the same time. 4年前
tests Make negative sampling more correct and more efficient at the same time. 4年前
.empty Initial commit. 4年前
.gitignore Add test_timing_05(). 4年前
README.md Add Citing note. 4年前
requirements.txt Start icosagon. 4年前

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

Citing

If you use this code in your research please cite this repository as:

Adaszewski S. (2020) https://code.adared.ch/sadaszewski/decagon-pytorch

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.