IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Stanislaw Adaszewski 8aafb6fa01 Clean up _equal(). vor 4 Jahren
docker Start working on experiments/decagon_run. vor 4 Jahren
docs Add icosagon-reltype-rules. vor 4 Jahren
experiments/decagon_run Start working on experiments/decagon_run. vor 4 Jahren
src Clean up _equal(). vor 4 Jahren
tests Make _equal() much faster. vor 4 Jahren
.empty Initial commit. vor 5 Jahren
.gitignore Add icosagon classes diagram. vor 4 Jahren
README.md Update README.md vor 5 Jahren
requirements.txt Start icosagon. vor 4 Jahren

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.