IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
Stanislaw Adaszewski b08ae2e160 Test for an approach to pairwise (rather than cartesian product) link predition. il y a 4 ans
docs Better way to compute DecagonLayer. il y a 4 ans
src/decagon_pytorch Test for an approach to pairwise (rather than cartesian product) link predition. il y a 4 ans
tests/decagon_pytorch Test for an approach to pairwise (rather than cartesian product) link predition. il y a 4 ans
.empty Initial commit. il y a 4 ans
.gitignore Started implementing convolutions, with tests. il y a 4 ans
README.md Update README.md il y a 4 ans

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.