IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。
Stanislaw Adaszewski b08ae2e160 Test for an approach to pairwise (rather than cartesian product) link predition. 4年前
docs Better way to compute DecagonLayer. 4年前
src/decagon_pytorch Test for an approach to pairwise (rather than cartesian product) link predition. 4年前
tests/decagon_pytorch Test for an approach to pairwise (rather than cartesian product) link predition. 4年前
.empty Initial commit. 4年前
.gitignore Started implementing convolutions, with tests. 4年前
README.md Update README.md 4年前

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.