IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Stanislaw Adaszewski b1a5f0d0ee Add common_one_hot_encoding(). il y a 4 ans
docker Start working on experiments/decagon_run. il y a 4 ans
docs Work on required vertices per layer. il y a 4 ans
experiments Add Citing note. il y a 4 ans
src Add common_one_hot_encoding(). il y a 4 ans
tests Add common_one_hot_encoding(). il y a 4 ans
.empty Initial commit. il y a 4 ans
.gitignore Add test_timing_05(). il y a 4 ans
README.md Add Citing note. il y a 4 ans
requirements.txt Start icosagon. il y a 4 ans

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

Citing

If you use this code in your research please cite this repository as:

Adaszewski S. (2020) https://code.adared.ch/sadaszewski/decagon-pytorch

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.