IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。
Stanislaw Adaszewski c1689b4985 Split decoders into cartesian and pairwise. 4年前
docs Better way to compute DecagonLayer. 4年前
src/decagon_pytorch Split decoders into cartesian and pairwise. 4年前
tests/decagon_pytorch Split decoders into cartesian and pairwise. 4年前
.empty Initial commit. 4年前
.gitignore Started implementing convolutions, with tests. 4年前
README.md Update README.md 4年前

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.