IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
Stanislaw Adaszewski c1689b4985 Split decoders into cartesian and pairwise. 4 år sedan
docs Better way to compute DecagonLayer. 4 år sedan
src/decagon_pytorch Split decoders into cartesian and pairwise. 4 år sedan
tests/decagon_pytorch Split decoders into cartesian and pairwise. 4 år sedan
.empty Initial commit. 4 år sedan
.gitignore Started implementing convolutions, with tests. 4 år sedan
README.md Update README.md 4 år sedan

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.