IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.
Stanislaw Adaszewski fc8f9726af Remove unnecessary .detach() call in dropout_dense(). vor 4 Jahren
docker Start working on experiments/decagon_run. vor 4 Jahren
docs Performance tests. vor 4 Jahren
experiments Add Citing note. vor 4 Jahren
src Remove unnecessary .detach() call in dropout_dense(). vor 4 Jahren
tests Remove unnecessary .detach() call in dropout_dense(). vor 4 Jahren
.empty Initial commit. vor 4 Jahren
.gitignore Add test_timing_05(). vor 4 Jahren
README.md Add Citing note. vor 4 Jahren
requirements.txt Start icosagon. vor 4 Jahren

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

Citing

If you use this code in your research please cite this repository as:

Adaszewski S. (2020) https://code.adared.ch/sadaszewski/decagon-pytorch

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.