IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.
Stanislaw Adaszewski a5b8701a0d Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. hace 4 años
docker Start working on experiments/decagon_run. hace 4 años
docs Add icosagon-reltype-rules. hace 4 años
experiments/decagon_run Shuffle. hace 4 años
src Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. hace 4 años
tests Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. hace 4 años
.empty Initial commit. hace 4 años
.gitignore Add icosagon classes diagram. hace 4 años
README.md Update README.md hace 4 años
requirements.txt Start icosagon. hace 4 años

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.