IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.
Stanislaw Adaszewski a5b8701a0d Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. 4 lat temu
docker Start working on experiments/decagon_run. 4 lat temu
docs Add icosagon-reltype-rules. 4 lat temu
experiments/decagon_run Shuffle. 4 lat temu
src Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. 4 lat temu
tests Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. 4 lat temu
.empty Initial commit. 4 lat temu
.gitignore Add icosagon classes diagram. 4 lat temu
README.md Update README.md 4 lat temu
requirements.txt Start icosagon. 4 lat temu

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.