IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
Stanislaw Adaszewski a5b8701a0d Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. il y a 4 ans
docker Start working on experiments/decagon_run. il y a 4 ans
docs Add icosagon-reltype-rules. il y a 4 ans
experiments/decagon_run Shuffle. il y a 4 ans
src Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. il y a 4 ans
tests Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. il y a 4 ans
.empty Initial commit. il y a 4 ans
.gitignore Add icosagon classes diagram. il y a 4 ans
README.md Update README.md il y a 4 ans
requirements.txt Start icosagon. il y a 4 ans

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.