IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
Stanislaw Adaszewski a5b8701a0d Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. 4 år sedan
docker Start working on experiments/decagon_run. 4 år sedan
docs Add icosagon-reltype-rules. 4 år sedan
experiments/decagon_run Shuffle. 4 år sedan
src Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. 4 år sedan
tests Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes. 4 år sedan
.empty Initial commit. 4 år sedan
.gitignore Add icosagon classes diagram. 4 år sedan
README.md Update README.md 4 år sedan
requirements.txt Start icosagon. 4 år sedan

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.